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An Analysis of the Curling Phenomenon 
in Viscoelastic Bimaterial Strips 

EROL SANCAKTAR 

Department of Mechanical and Aeronautical Engineering, Clarkson University, 
Potsdam, NY 13699, U.S.A. 

(Received February 2, 1992; in f ind  form December 17, 1992) 

A mathematical analysis is performed to obtain relations for the radius of curvature and flexural 
moments for initially stretched bimaterial strips in which at least one of the materials exhibits viscoelastic 
behavior. One practical application of this analysis is for pressure sensitive tapes. Consequently, the 
radius o f  curvature and flexural moment relations are obtained as  functions of backing and adhesive 
thicknesses and moduli for  typical pressure sensitive tapes. The analysis shows that the flexural moment 
decreases as the backing thickness and/or backing modulus increase. Furthermore, the flexural moment 
decreases as the adhesive thickness and/or adhesive modulus decreases. 

KEY WORDS pressure sensitive adhesive tapes; curling; flagging; self-peeling; strain mismatch; 
recovery strains; flexural moment. 

INTRODUCTION 

Curling or flagging are terms which describe self-peeling and lifting of the ends of 
a pressure sensitive tape which was initially adhering to a substrate (Figure 1). The 
self-peeling occurs due to the asymmetric recovery of initial stretch induced in the 
adhesive tape during its processing and/or its application to a substrate. After self- 
peeling, lifting tape forms a flag or tab tangent to the contour of the wrap, or a 
spiral wrapping of the tape becomes partially or completely unwound. 

Consequently, self-peeling o f  adhesive tapes can be attributed to elastic recovery 
and delayed elasticity induced by residual stresses (caused by processing and/or ap- 
plication conditions), application pretension or  other stresses induced during appli- 
cation, such as peeling of release liner, unwinding of tape from its core and tearing 
off of a length of tape. 

Recovery strains induced in this manner cause unequal flexural stresses at the top 
and bottom surfaces of the composite tape and, consequently, result in a net peeling 
moment. The asymmetry in the flexural stresses is due to unequal moduli of elas- 
ticity and thicknesses of the backing and the adhesive layer. Considering a pressure 

*Part of this manuscript was published in the Proceedings o f  the 1991 Technical Seminar of the 
Pressurc Sensitive Tape Council (PSTC Tech XIV). 
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176 E. SANCAKTAR 

FIGURE 1 
ends in the middle of taped box top. 

An example of curling (flagging) in pressure sensitive tapes illustrated by lifting o f  strip 

sensitive adhesive tape adhering to a substrate, when the peeling moment created 
by the  elastic recovery and the mismatch between the backing and the adhesive 
exceeds the adhesion force on the substrate, self-peeling occurs. 

Elastic and linear viscoelastic approaches have been used to analyse various 
aspects of films, beams or plates with induced curvatures. Greener et al.’ developed 
a phenomenological model for bending recovery in polymer films by extending the 
classical bending theory to linear viscoelastic materials. They used homogeneous 
material films but assumed dissimilar tensile and compressive bands across the film 
interrelated through “temporal shift .” The relaxation modulus of the polymer was 
modeled using the generalized Maxwell function and the effect of temperature was 
included using the time-temperature principle. Dillard’ obtained closed form solu- 
tions to predict the peel stresses between adherends which form a parallel bond but 
would have slightly different curvatures in their unbonded, stress-free states. He 
used an elastic approach for this purpose and proposed that for the case of bimaterial 
beams the inverse of the sum of the individual compliances be used to represent 
the effective beam stiffness. Neither analyses offered mathematical relations which 
explicitly included thicknesses or elastic moduli for the components of a bimaterial 
strip with induced curvature. Such relations will be developed in this paper. 

The method of analysis to be presented for the self-peeling problem is based on 
the “equivalent stiffness” a p p r ~ a c h . ~  With this method an equivalent stiffness rela- 
tion is developed for the adhesive (thickness t,)/backing (thickness th) composite 
(Figure 2) so that it can be treated as a homogeneous beam under bending. This is 
done by (hypothetically) adjusting the width of each component in the same pro- 
portion as their moduli of elasticity make with the modulus of the homogeneous 
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TAPE WIDTH 
W I 

I* 
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FlGURE 2 Pressure sensitive tape considered as bimaterial composite strip. 

(assumed) beam (see Appendix). Consequently, the equivalent stiffness property, 
EI, of the strip is obtained as: 

EI = K,(Wt'~t,E,Eh)/l2(t,E, +thEt,) (1) 

( 2 )  

where 

K, = 4 f 6(th/tCl) + 4(tt,/tC1)? 4- (Ek,/E,)(th/t,)7 + (E,/Eh)(td/fh) 

with Eh and E ,  representing the backing and adhesive Young's moduli and W is the 
tape width. Derivation of Equations (1) and (2) is shown in the Appendix. 

ANALYSIS FOR FLEXURAL MOMENT AND RADIUS OF CURVATURE 

I-Analysis Based on the Assumption of Elastic Backing Behavior 
Obtained at High Rates of Loading: 

Based on the geometry shown in Figure 3 ,  standard elastic beam flexure analysis 
results in the following basic equations: 

Flexure strain E is given by: 

E = y/p ( 3 )  
where y is the distance from the neutral axis to the point of interest along the 
thickness of the strip and p is the radius of curvature created by the applied 
moments. Consequently, based on Hooke's law, the flexure stress can now be calcu- 
lated by 

u = Ey/p (4) 

( 5 )  

The moment resultant, M,  on any cross section, A,  of the strip can be calculated as 

M = 1 uydA = E/p I y2dA 

Since the integral on the far right side of Equation (5) defines the area moment of 
inertia, I, we can now write: 

l / p  = M/EI (6) 
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FIGURE 3 Flexure geometry 

Since a pressure sensitive tape constitutes a backing/adhesive composite strip, we 
need to express strain, E, at any distance, y, from its backing/adhesive interface as 

E = €0 4- (YIP) (7) 

where E, is the  strain at the interface and (y/p) is the strain due to bending of the 
strip. Note that E, is common to both the backing and the adhesive and, conse- 
quently, the mechanics requirement for continuity of strains across the interphases 
is not violated. Also note that the space variable, y, of Equation (7) is assumed to 
originate at the backing/adhesive interface and is positive upward as shown in 
Figure 3. Consequently, calculated (see Equation 12) and measured radius of curva- 
ture values will be in reference to the backing/adhesive interface. The flexural 
moment values to be calculated (see Equation 13) based on Equation ( 6 )  using the 
equivalent stiffness Equation (l), however, will be in reference to the neutral axis 
(centroidal axis of the transformed section, see Appendix) as necessitated by the 
force equilibrium condition which is satisfied by the equivalent stiffness method. 
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CURLING PHENOMENON IN BIMATERIAL STRIPS 179 

We now define recovery strains in the backing and adhesive as E,, and E,, respec- 
tively, so that the corresponding stresses become: 

UL, = Eh [E,, + (YIP) - Eb] 0 5 y s t b  (8) 
and 

In order to be able to solve the boundary value stress-strain problem for the 
composite strip, we need to satisfy two basic equilibrium conditions: force equilib- 
rium and moment equilibrium. The force equilibrium dictates that 

Similarly, the moment equilibrium is obtained as: 

i]:'~,, Wydy + 1') uc1 Wydy = 0 (11) 
- 1.1 

Integration of Equations (10) and (11) can be performed after substitution of 
Equations (8) and (9) for (Th and ua, respectively. After integration, the interface 
strain, E,, can be expressed in terms of E, and E,, using the integrated version of 
Equation (10). Subsequently, this equation (force equilibrium) can be substituted 
for the E, term in the integrated version of Equation (1 1) (moment equilibrium) to 
result in the radius of curvature, p, equation: 

P = K1/6(ECi - Eb)[ (l/fd) + (tbltf)] (12) 
Note that if the composite strip is initially curved (prior to curling) with (Upo) 

representing the initial curvature for the interface, then the inverse of left hand 
side of Equation (12) can be written as (Up) 5 ( l/po) depending on whether initial 
curvature is in  the direction of curling (+ )  or in its opposite direction ( - ) .  

Equations (6) and (1) can now be used in conjunction with Equation (12) to 
express flexural moment, M, as a function of recovery strain difference (E,-E,,): 

M = (Ed - Eb){(td + th)WtathEaE&(tdE, f fhEb)} (13) 

It is convenient to express the recovery strain difference (ed - E,,) as a function of 
the force applied externally to the composite strip during processing or usage. For 
this purpose we assume that the strains in the backing and the adhesive layer are 
the same and equal to E initially due to the application of force, F. Consequently, 
simple force balance yields: 

F = EW(E,ta + Ehtb) (14) 

Due to the highly viscous nature of the pressure sensitive adhesives commonly 
used, we also assume that the adhesive strains are largely unrecoverable or plastic 
in nature so that we can write 
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180 E. SANCAKTAR 

Note that Equation (15) allows some recovery in the adhesive layer even though 
for most pressure sensitive tapes the ratio (E,/Eb) is in the order of lo-'. The 
physical implication of Equation (15) is the following: The difference in the recovery 
strains for the adhesive and the backing is nearly equal (99%) to the strain, E, 

induced by an initial tension force, F, applied to the composite strip prior to its 
curling. This implies that the backing recovers a large portion of the tensile strain 
while the adhesive retains a large portion of it. Substitution of Equation (14) in 
Equation (15) results in 

(€,-&) = [1 - (Ea/Eh)] F/W(E,t, Ebfb) (16) 
Further substitution of Equation (16) in Equation (13) results in our final relation 
for the flexural moment as 

M ={[1 - (E,/Eb)](t, + t,)/2[(Eat,/E,t,) + (E,t,/'E,t,) + 2]}F (17) 

Equation (16) can similarly be substituted in Equation (12) to obtain a relation 
for the strip curvature (Up) as a function of the applied force F. 

Discussion 

We first note that the flexural moment, M, and the radius of curvature, p, are 
inversely proportional (Equation 6). In other words, if either one of them is an 
increasing function of a parameter, such as backing thickness tb, etc., then the other 
would be expected to be a decreasing function of the same variable. 

Inspection of Equation (17) reveals that the flexural moment decreases with in- 
creasing backing modulus and/or backing thickness while it increases with increasing 
adhesive thickness and/or adhesive modulus. These results can be seen more clearly 
in Figures 4 through 6 which show the plots of Equations (17) and (12) for the case 
of Eb=37 ksi, E,z377 psi, F=O.6 lb and W=%4 in. 

Note that increasing radius of curvature, p, in Figures 4 through 6 indicate less 
flagging since in the limit tapes adhering to flat surfaces would have infinite radii of 
curvature. As expected, large radii of curvature correspond to smaller values of 
flexural moment. 

A limited number of experiments performed using two different pressure sensitive 
adhesive tapes having different backing thicknesses and moduli provided data in 
reasonable agreement with Equation (12) when the strips were loaded at high rates 
initially. The agreement was closer for the strip with backing which had higher 
modulus but was thinner. The results of these experiments are shown in Tables I 
and 11. In these experiments initial tension was induced by peeling off the release 
liner at 180" using an Instron testing machine under laboratory ambient conditions. 
The radii of curvature were measured using circular templates and also by making 
permanent impressions of the specimens. In general, the backing material for the 
composite tapes tested were various blends of vinyl with other polymers and plasti- 
cizers and coated with a latex adhesive. 

Table I shows that for the pressure sensitive adhesive tape which had a backing 
with 37 ksi modulus and 1 x in thickness, 50 in/min loading resulted in p = 0.063 
in. The curl radius calculated based on the analysis of this paper is p=O.O71 in.  
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TABLE I 
Experimental curling results-pressure sensitive tape no. 1 

t b = l x l O - '  in, EL,=37 ksi 
t , = 1 ~ 1 0 - ~  in,  E,=0.37 ksi 

Number of 
specimens Cross-head Max. peel force Steady peel Curl radius 

tested rate (inlmin) (Ib) force (Ib) (in) 

2 0.2 0.53 0.35 0.055 
2 50 0.61 0.46 0.063 

Calculated 
value = 0.071 

TABLE I1 
Experimental curling results-pressure sensitive tape no. 2 

t , = 3 . 5 ~ 1 0 - ~  in, Eh=14 ksi 
t,=l.Ox lO-'in, E,=0.37 ksi 

Number of 
soecimens Cross-head Max. peel force Steady peel Curl radius 

tested rate (inlmin) (Ib) force (Ib) (in) 

0.02 
0.2 
1 
5 

50 

0.18 0.11 0.188 
0.57 
0.78 
0.71 
0.77 0.76 0.344 -+ -r: 

0.38 0.5 0.328 
0.53 0.26 4 0.281 
0.54 0.305 + 0.367 

Calculated 
value=0.53 
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CURLING PHENOMENON IN BIMATERIAL STRIPS 183 

For another tape with a three and a half times thicker but lower modulus 
(Eh= 14 ksi) backing, initial stretching with 50 in/min loading rate resulted in 0.344 
in or higher curl radii (Table 11). For this case the calculated value is p=O.53 in. 
With this particular adhesive tape initial curl radii values as high as 0.5 in were 
obtained when initially stretched at rates as low as 0.2 in/min (Table 11). 

Il-Analysis Based on Viscoelastic Backing Behavior: 

Examination of Tables I and I1 also reveal viscoelastic effects illustrated by a general 
increase in the curl radius with time (Table I1 cross-head rates 1 in/min and higher) 
and increased loading rate (Tables 1 and 11). The author attributes the observed 
increases in the curl radius over time for specimens initially stretched with cross- 
head speeds of 1 in/min and higher (in Table 11) to the relaxation of the backing 
material over time. As shown in Figure 7,  typical backing materials made of thermo- 
plastic polymers are expected to exhibit relaxation behavior. At low levels of loading 
such as this case, this behavior can be approximated with the use of a linear visco- 
elastic model such as the Maxwell model. The relaxation behavior of the backing 
material can be included in the present analysis by expressing the flexural moment, 
which is proportional to the stress, as a function of time with the use of the Maxwell 
model. Consequently, Equation (17) can be written as 

M(t) = F{[1 - (E,/Eh)](t, +th)/2[(E,t,/Ehth) -I- (E,t,/E,t,) + 2]}{exp( - t/T)} (18) 

where t represents time and T is the relaxation time for the backing material which 
can be obtained by curve-fitting the Maxwell model’s relaxation equation to the 
backing materials relaxation data such as is shown in Figure 7. Note that the use 
of a time-dependent equation for the relaxation time, T(t), may be necessary to 
approximate possible continuous change in the relaxation time as would be repre- 
sented by a Maxwell chain.4 

The reductions in the radius of curvature at lower cross-head rates, however, can 
be attributed to the lower values of the elastic modulus, Eb, of the viscoelastic 
backing material due to lower rates of loading. Such reductions in the elastic moduli 
of thermoplastic strips at lower loading rates is common and one example is illus- 
trated in Table 111. Examination of Figure 4 reveals that such reductions in the 
backing modulus results in smaller values for the radius of curvature and this is 
the behavior observed experimentally (Tables I ,  11). One can fit a semi-empirical 
equation such as Ludwik’s Equation’ to the available rate versus modulus data in 
the form 

Eb(@) = (ail)Eh’ + (an)Eh”LOg(e/e’) (19) 
where e is the strain rate, aT1 and aT2 are shift factors as functions of temperature 
and E’, E” and e‘ are constants. 

Equation (19) can now be substituted in Equation (18) to include the effects of 
rate on the flexural moment. Note that a similar relation can also be obtained for 
the curl radius of curvature as a function of rate, temperature and time by utilizing 
Equation (6). 
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TABLE 111 
Variation of elastic properties with strain-rate for a typical polymer hacking matcrial 

Cross- head Initial elastic strain Modulus of 2.5% strain 
rate (inimin) rate ( %  imin) elasticity (ksi) yield limit (psi) 

0.5 
2 
5 

10 

17.2 
67.2 

182 
378 

33.2 
38.8 
39 
39.5 

930 
1000 

I 130 
in70 

GENERAL EQUILIBRIUM CONDITION FOR PRESSURE SENSITIVE 
ADHESIVE STRIPS BONDED TO CURVED SURFACES 

Given an equivalent stiffness, EI, for the composite strip, the overall moment equi- 
librium for an adhesive strip initially stretched and then bonded to a curved surface 
can be written as 

M = EIip = j (F,)dl + 1 (m,,)Wydy 

where Fa is the adhesion force between the substrate surface and the composite strip 
and, u, is the thickness-dependent stress created in the viscoelastically deformed 
adhesive layer due to the presence of curvature. Note that Equation (20) represents 
a general case of bonding to a curved substrate surface and. consequently, the 
curvature term on its left-hand side should include the curvature of the surface also 
as explained earlier under Equation (12). 

CONCLUSIONS 

The present analysis shows that in pressure sensitive adhesive tapes recovery 
stresses and, consequently, the peeling moments are reduced by, i) increasing the 
thickness of the backing and/or, ii) increasing the rigidity ( i . e .  modulus of elasticity) 
of the backing. Increases in backing thickness should have a more pronounced 
effect. Furthermore, the flexural moment decreases as the adhesive thickness and/or 
adhesive modulus decreases. Obviously, if sufficient adhesion force is available 
between the strip and the substrate the presence of recovery stresses may be equili- 
brated. The presence of rate, time and temperature effects on the self-bending 
behavior can also be taken into account with the methodology presented. 
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APPENDIX 

Equivalent stiffness, EI, of the backing/adhesive composite strip, given by Equa- 
tions (1) and (2) can be derived as follows: 

Define elastic moduli ratio, n, as 

n = E,/E,, (‘41) 
The cross section of the bimaterial strip is hypothetically transformed as shown in 
Figure A1 so that the width of the adhesive layer is now equal to nw while the width 
of the backing is maintained as w. 

The centroid of the transformed section coincides with the neutral axis of the 
composite beam and is located at a distance yc vertically from the bottom (free) 
surface of the adhesive layer: 

yc ={thW[t, + ( t&?)]  + t,nw(t&))/[nwt, + Wth] (A2) 
The area moment of inertia for the transformed composite section can be found 

by using the parallel axis theorem: 

i,=(Wt$12) +thw[(t&) +t,-y,]’+(nWt;f/l2)+nWt,[y,-(t,/2)]’ (A3) 

Substitution of Equation (A2) yields 

~ x = ( W t ~ + n W t ; f ) / l 2 ) + t h W [ ( f h / 2 ) + t a - ( f ~ + 2 t h f a + n t ~ ) / 2 ( n t , + t b ) ] 2  (A4) 
+ nwt,[(tS+ 2tbta + ntf)/2(nt, + tb) - (t,/2)]’ 

Equation (A4) is simplified using algebra: 

ix = w[nt’,t, + t;l+ n2t: + nt;ftb + 3t3,t,n +6tit:n + 3tht~n]/12(nt, + tb) (A5) 

Substitution of Equation (Al)  yields 

ix = ~[4E,tht: + 6titiE, + 4ttt,E, + t& + (Ef/Eb)t:]/12(Eat, + E&) (A6) 

W 

I ’  
I 

‘I 
I 

NEUTRAL AXIS FOR COMPOSITE SECTION 
ADIIESIVE 

Ea 

nw 
I- - ----------- 

REFERMCE AXIS I 
J 

FIGURE A1 Transformed cross section of the bimaterial strip. 
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The equivalent stiffness for the composite beam is now obtained as 
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